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AN EMPIRICAL INVESTIGATION OF SOME EFFECTS OF THE V/OLAT/ON OF

THE ASSUMPTION THAT THE COVARIABLE IN ANALYSIS OF COVARIANCE

IS A MATHEMATICAL VARIABLE1

Dick S. Calkins

The University of Texas at El Paso

and Earl Jennings

The University of Texas at Austin2

In many cases the analysis of data in behavioral research can be

accomplished through the formulation of a linear model which appears to

represent the essential aspects of a suspected relationship between the

independent and dependent variables being investigated. In such a model

the data appear as variebles and the statistics appear as constantswhich

are calculated from the data. When certain mathematical procedures are

used for calculating the values of the statistics and certain assumptions

have been met concerning the selection and d...4tribution of the values of

the variables in the population from which the data were drawn, it can be

shown mathematically that the statistics are "good" estimates of the para-

meters and that accurate probability stctements illvolving possible differ-

ences in the parameters can be made. However, if the assumptions concern-

ing the selection and distribution of the values of the variables in the

population are not met, it may be very difficult to show mathematically

how the estimates the parameters and the probability statements involving

differences in the parameters will be affected. In some instances, the
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effects of the violation of these assumptions may be of small enough magni-

tude that they are of no practical significance. The magnitude of the

effects of the violation of such assumptions can be investigated empirically

by repeatedly sampling from populations of values with known characteristics

when the assumptions to be investigated are not met. This study was per-

formed to investigate the effects of the violation of one such assumption.

For the mathematical model which is the basis for regression analysis,

it is necessary that the continuous independent variables are mathematical

variables (in contrast to random variables) before it can be shown that

the statistics are "good" estimates of the parameters or that the shape

of the sampling distribution.of the statistics follows the normal distri-

bution (Graybill, 1961, pp. 195-200, 383-396). If the sampling distribu-

tions of the statistics are non-normal, the probability statements involv-

ing differences in the parameters may be inaccurate. The intent of this

study was to investigate the effects produced for a particular family of

linear models Which contain both continuous and binary coded independent

variables when the assumption that the continuous variables are mathema-

tical.is not maintained.

The Models

The linear models investigated can be utilized to alleviate a fre-

quently occurring problem in behavioral research. This problem arises

when an investigator desires to examine differences in existing groups

where the differences could be attributable to some quantifiable concomi-

tant influence. In such a situation, the investigator would probably

want to investigate possible differences in the performance of the groups

as measured by some dependent variable without regard to differences due

to the concomitant variable. A logical approach to this difficulty would

be to consider the joint frequency distribution for the dependent variable

and the concomitant variable for each group. Comparison of the joint

frequency distributions for tae grouts in effect makes possible the com-

parison of values of the dependent variable for individuals in the various

groups Who have the same value for the concomitant variable.

Bottenberg and ihrd (1963, PP. 76-86) present a family of linear models

which can be used to make these previously mentioned comparisons in a more
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quantitative manner. The most general model of this family is written

Y. m a + b X. + e.
341 j j ij ij Model 1

3

whereYuisthevalueathedepervientvariable,Xiiis the value of the

concomitant variable, and e
ij

is the error associated with use of Model 1

with the ith member of the lp group, j = 1, 2, . . m where m is the

number of groups and i = 1, 2, . . n where is the number of indivi-
i

duals in the Ith group. (In this model it is assumed that within any

popvlations from which the groups were selected, the expected change in

the value of the dependent variable per unit change in the value of the

concomitant variable is constant over the range of the values of the con-

comitant variable.) The evaluation of the constants in this model from

the data produces a u..lique value of a and b for each group. The value of

a and b for each group results from fitting a regression line to the joint

frequency distribution for the dependent variable and the concomitant

variable for each group. The values of a and b then rapresent the inter-

cept and slope of the regression line for each group. The determination

of whether the various groups differ on the dependent variable without

regard to differences due to the concomitant variable can be made in terns

of the intercepts and slopes of the group regression lines.

Probability statements involving possible differences in the intercept

and the slope parameters for the populations from which the groups were

selected can be made by calculation of a critical statistic which is a

function of the error sum of squares in Model 1 and in models derived in

particular ways from Model 1. Probability statements involving differ-

ences in the slope parameters for the populations from which the groups

were selected can be made on the basis of the value of a critical ratio

which is a function of the error sum of squares (s) from Model 1 which

can be written
m n,

s * Z dE 2

jiml eii

and the error sum of squares from a model derived from Model 1 which

restricts all of the values of group slope to the same value. This
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restricted model is written

Y = a + bX. + f.
i

Model 2
j

where Yij is the value of the dependent variable, Xij.is the value of the

concomitant variable, and e
ij

is the error associated with the use of

Model 2 with the ith member of the Ath group; j = 1, 2, . . m where m

is the nutber of groups and i = 1, 29 . . n where n is the nutber of

individuals in the Ath grou,. The common value of group slope is b and

the a's are the group intercepts. The error sum of squares (t) from

Model 2 can be written
m n

t E Ejf 2
j=1 i=1

Probability statements involving possible differences in the intercept

parameters for the populations from which the groups were selected, assum-

ing that the slone parameters for these populations are equal, can be made

on the basis of the value of a critLcal statistic which is a function of

the error sum of squares (t) from Model 2 and the error sum of squal'es (r)

from a model derived from Model 2 which restricts all the values of group

intercept to the same value. This restricted model is written

Y
ij

= a + bX
ij gj+ . Model 3

l

whereYuiethAvalueathedepencleavarisble,Xijis the value of the

concomitant variable, and e
ij

is the error associated with.the use of

Model 3 with the ith meMber of the Ath group; j = 1, 2, . . .1 m where m

is the nuMber of groups and i = 1, 2, . . n, where is the nuMber of
-J

individuals in the Ath group. In Model 3, a is the value of the common

intercept for all the groups and b is the value of the common slore for

all the groups. The error sum of squares (0 from Model 3 can be written
m n4

r = 1: g
ij

2
*

j=1 1=1

The extent of this research was to investigate the properties of

Models 1, 2 and 3 and the probability statements based on these models

when the concomitant variable was not a mathematical variable. The

comparisons made possible by the use of these models are essentially

those made in analysis of covariance.

5



5

Mathematical and Random Variables

In the mathematical treatment of a linear model which is necessary

in order to derive computing expression for the constants and the critical

statistics, an important consideration is the type of variables which are

used in xle model. The two types of variables-generally recognized by

mathematical statisticians are random variables and mathematical variables.

The following definition of a random variable has been adapted from

Alexander (1961).

If for a particular random experiment, {A1,..A3 is the set of

outcomes (sample points) defining the sample space of the random

experiment, and if {X1, . . XI) is a set of numbers such that Xi

is associated with the,corresponding outcome Ai for i = 1, . k

then the set of values fX1, . . X0 is called a random variable

for the particular random experiment.

For a variable to be considered a mathematical or fixed variable,

the values assumed by the variable must be known constants; that is, the

values of a mathematical variable must be pre-selected from the range of

possible values assumed by a random variable. For example, consider the

case where an Investigator is interested in evaluating the relative effects

of an experimental curriculum and a control curriculum after the removal

of the unwanted influence of difference in initial performance. If the

investigator desired to treat his assessment of initial performance as a

fixed variable in Models 1, 2 and 3, it would be necessary for him to

select certain values of initial performance before he tested the pupils

and then to use in the analysis only the pupils who had those specific

values of initial performance. If he wished to treat initial performance

as a random variable in the models, he could simply assess the initial

performance of all the available pupils and use their scores regardless

of particular values.

Another important consideration involving the variables which appear

in a linear model is concerned with the amount of error inherent in the

process of observation of the values of the variable. Whether a variable

is treated as fixed or random, the process by which the values of the

variables are observed usually introduces some error of measurement. The

relative magnitude of the error introduced by the measurement process is

6
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generally used a priori to determine whether the observed values of a

variable will be treated in the model as measured with error or as error

free. For example, it would probably not be reasonable to conclude that

observed initial performance is an errorless assessment of a given sub-

ject's potential.

The mathematical derivation of the sampling distributions of the

estimates of the unknown parameters and the properties of the critical

ratios for linear models involve both the type of the variables and

whether or not the variables are considered to be measured with or with-

out error. In the mathematical treatment of models of the same type that

are considered here, it is assumed that the X's are both fixed and measured

without error (Graybill, 1961, pp. 103-104 and 383). Berkson (1950) has

shown mathematically that if the X values are fixed variables but measured

with error, the probability statements based on the critical ratio and the

sampling distributions of the statistics are not effected. In considera-

tion of further comments by Graybill associated with the assumptions

underlying the various models and the associated mathematical development

of the models which do consider various cases where the X's are treated

as random varidbles both with and without error, it becomes apparent that

a general solution to this problem is both difficult and unaVailable.

There are instances in the natural and behavioral sciences when it is

no problem to design experiments such that a concomitant variable is a

fixed variable measured with very little error. For instance, if temper-

ature were considered to be a varidble which vas critically affecting the

comparison of yield in two or more manufacturing processes, all the pro-

cesses could be utilized a given number of times at pre-selected values of

temperature and then differences in the yields of the processes could be

evaluated using Models 1, 2 and 3 to make possible comparison of the yield

of the process with the effect of temperature removed. In the social

sciences, if practice in an experiment concerning the effects of rein-

forcement on performance Imre thought to influence the comparison of

performance for the various reinforcement conditions, there would be

little problem involved in selecting certain amounts of practice and then

assessing performance for a certain number of individuals for each rein-

forcement condition at the selected amounts of practice. With amount of
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practice a fixed variable measured with little error, use of Models 1,

2 and 3 to compare the performance of the-various keinforcement conditions

with the effect of practice removed 5,3 in correspondence with the assump-

tions for these models.

Unfortunately, the use of Models 1, 2 and 3 in the educational example

when the concomitant variable is fixed is not a very satisfactory procedure

because of the related problems of obtaining sufficient subjects who have

the necessary scores on the concomitant variable within the constraints

of the experimental situation. This problem is compounded by the diffi-

culty involved in obtaining relatively errorless values of the concomitant

variable. What usually occurs in actual practice is that the investigator

ignores the requirement that the concomitant variable be fixefl.and error

free and proceeds with the analysis as if this variKble were fixed. The

purpose of this study was to investigate the effects of the failure to

meet these assumptions of the model when the X values are values of a

random variable and are measured without error. This was accomplisbad

by determining whether differences in the nudber of incorrect decisions

based on the critical statistic for differences in the b's in Model 1 and

the critical statistic for differences in the a's in Model 2 occur when X

is a random variable rather than a mathematical variable. Also, compari-

sons were made between the distributions of the b's in Model 1 and of the

a's in Model 2 when the X values were values of a random variable and

values of a mathematical variable. The case when the X values represent

values of a random variable measured with error was not treated in this

study.

Methods

In order to conduct this empirical investigation, computer vrograme

were written in FORTRAN to be run on the CDC 6600 Computer System at The

University of Texas at Austin. These computer programs, which are shown

in Calkins (1971), allowed values of Y to be randomly selected from var-

ious bivariate populations having predetermined parameters for values of

X either fixed or randomly obtained. The specified characteristics of

the bivariate populations were the type of bivariate distribution and the

meane and variances of the X and Y marginal distributions. (In actuality,

8
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it yes difficult to maintain constant variance when the X values were

fixed.) Factors of the investigation which were varied are number of

cases (X,Y pairs) sampled from each group, shape of the X marginal dis-

tribution from which values of X were selected, and the variance of the

Y values in each X array. The principal statistics which were observed

are the distributions and expected values of the a's and b's, and the

critical statistics based on possible differences in the a's and b's.

In general, the X and Y marginal distributions of the bivariate

frequency distributions had means of 50.0 and standard deviations of

10.0, and correlations of 0.15, 0.30, 0.45, 0.60, 0.75 and 0.90 were

used to determine the variance of the Y values for each X array. Samm.

plea of size five, 13 and 39 were used in experiments of 1,000 samnles.

The shapes of the X marginal distributions which were used are normal

distributions and rectangular distribtuions. The corresponding types

of bivariate distributions which were used are bivariate normal and the

values of Y normally distributed for each value of X used but with all

the Y arrays having equal variance.

Measurement of the Effects

Critical features of the various sampling distributions of the sta-

tistics were used to compare the effects of fixed and random selection

of X values. The distributions of the a's and the b's were compared

with their counterparts through the use of functions of the first four

cumulative moments of their respective distributions. These statistics --

mean, variance, skewness and kurtosis -- were calculated using the com-

puting expressions from Fisher (1958). It was expected that these statis-

tics would closely approximate the population values.

The F statistic is the critical statistic which was investigated.

The F statistic upon which decisions concerning possible differences in

the b's or slopes in Model 1 was denoted Fb, and the F statistic upon

which decisions conce.cning possible differences in the a's or intercepts

in Model 2 was denoted P
a

. A concise presentation of a procedure for the

caluculation of values of these statistics was adanted from Bottenberg

and Ward (1963, pp. 76-86), although for the actual computations of these

values, computing expressions from Winer (1962: pp. 578-588) were used.

9
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eij is the error from Model 1

associated with individual

i. from group 42.

and fij is the error from Model 2

associated with individual

from Eroup
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(q3-q2)/df m n

q
2

/

4 2

where (13 = Ej Zid gii= df4

df
3
= m 1

dr 4 21 nj

j=1

and gij is the error from Model 3

associated with individual

i from grcAld

Since in this study all the samples for the groups were drawn from

the same population, the expected values of Fa should be near df2/(df2 - 2)

and F
11,

should be near df
4
/(df, - 2). Also, nct more than.five percent of

the Values calculated for Fa
and F

b
should be equal to or greater than the

specific values of the central F distribution for the proper degrees of

freedom at the .05 confidence level. Depaxture from what is expected for

either of theue criteria would indicate that the.values of the critical

statistic are not P distributed, although the latter air* is the more
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important, since departure from what is expected vould upset the decision

rule.

Sampling Procedure

In Monte Carlo studies such as this one, vhere sampling must be done

from a joint frequency distribution representing a population of indivi-

duals, problems concerning efficient computer usage arise because large

blocks of computer storage would be required to contain the frequency

distribution. For this reason and other aspects of efficiency, actual

frequency distributions were not used in this study. Instead of actually

sampling from existing frequency distributions, random deviates were

generated using computer programs based on pseudo random numbers such that

these random deviates simulated sampling with replacement from distribu-

tions with desired characteristics.

The source of pseudo random numbers for this study was RANF3, a
. .

FORTRAN function, which id available through the CDC 6600 computer system

and documented in the computation center User's.Manual of The University

of Texas at Austin. The algorithm by which these pseudo random numbers

were generated appears sufficient, for the purposes of this study, to

consider the pseudo random numbers to be random. This function was

utilized such that the same sequence of random numbers was used in each

experiment.

The random numbers generated by RAU were used in two other functions,

RNORMD and RANREC, to generate numbers which were random deviates of a

normally distributed variable with a specified mean and variance in the

case of RNORMD and random deviates from a rectangularly distributed

variable with a specified mean and variance in the case of RANREC.

3.Actually these so-called pseudo random nuMbers from RANF can be

viewed as random samples from a continuous rectangular distribution which

is defined only over the range zero to one. For purposes of this study

deviates are defined to be random samples from distributions with speci-

fied characteristics which differ from the characteristics of the distri-

bution inherent in RANF. Thus the numbers obtained from RANF are called

random nuMbers and all nuMbers used in this study which are functions of

the numbers obtained from RANF are called random deviates.

11
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The random deviates from RNORMD and RANREC were used to produce

numbers which were themselves random deviates from biliariate frequency

distributions. (In the following discussion of the procedure used in the

generation process, it may be helpful for the reader to refer to Figure 1.)

Random deviates for a bivariate normal frequency distribution were generated

by first obtaining a random normal value of X from a univariate distribu-

tion with a mean of 50.0 and a standard deviation of 10.0 by using RNORMD.

The corresponding Y value is a random deviate from a normal distribution

with a mean equal to the predicted value of Y for the particular value of

X and a standard deviation which is the stadard error of the estimate

(S s
y

r
yx

5") for predicting Y from a knowledge of X. This random
yx

value of Y was thus generated by again using RNORMD to obtain a random

normal deviate from a distribution with a mean equal to A + BX and a stan-

dard deviation equal to S where X is the previously generated deviate
Yx

-.and A, B and S are values calculated from the.raraneters specified for
yx

the bivariate frequency distribution. This pair of X and Y values then

represents a random deviate from a bivariate normal frequency distribution

with specified X and Y.univariate means and standard deviations and

bivariate correlation.

For the case where it is necessary to obtain deviates from a bivariate

normal frequency distribution for normally distributed but fixed values of

X, the procedure for the generation of the Y values was the same as for

generation of the random values of X but the procedure for Obtaining the

X values was different. Thirteen fixed values of X were chosen. These

values were the mean of the X marginal distribution and six equally spaced

values above and below this mean. The spacing of these values was deter-

mined in terms of the value of the standard deviation of the X marginal

distribution such that these 12 values were equal to the mean plus or minus

4152 1. 0, 1.5, 2.09 2.5, and 3.0 times the standard deviation. The fre-

quency of occurrence of each of these fixed values was used to determine

the shape of the X marginal distribution. In order that the X marginal

distribution be normally distributed, values of the probability function

of the normal curve were obtained from a z score table using the X values

inIscore form as arguments. Since the height of the probability function

12



/Obtain a random deviate
distributed normally
with mean * M

x
and

Standard deviation : SO,..
with RNORMD. This valui
is X.

M
x

and SD
x

(the univariate mean and
standard deviation of X)

M and SD (the univariate mean and
Y standard deviation of Y)

yx

where

(the blvariate correlation
between X and Y)

is the standard error Involved with estimating
" Y from the knowledge of X

8 Is the slope of the regression line which is
fit to the Joint distribution of X and Y

A Is the Y intercept of the regression line which
is fit to the Joint distribution of X and Y

Yes

Obtain a fixed value of
X such that the mean of
all the X's will be M

x
,

the standard deviation
will be SDx and the Xis
will be normally distri-
buted.

Obtain a random deviate
distributed rectangu-
larly with mean * Mx
and standard deviation
2 SOx with RANREC. This
value is X.

Calculate Mvx (the mean of the
Y's for a particular value of X)

M
y
=X8+ Ax

Obtain a fixed value of X
such that the mean of all
the X's will be Mx, the
standard deviation will be
Spx and the Xls will be
rectangularly distributed.

Obtain a value for Y which is a random deviate distributed normally
with a mean * M and a standard deviation 2 S with RNORMD.

yx yx

Figure 1. Flowchart showing the methods for obtaining the X and Y values

for each of rhe various configurations of the bivarlate frequency distributions.

13
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of the normal curve for a particular z score can be interpreted as a

proportion of the total nunber of cases occurring for that z score, the

number of cases needed for any value of X for this particular selection

of 13 z scores can be obtained by multiplying one-half the desired sample

size by the height of the probability function of the normal curve for

that X in z score units. The Y value corresponding to this value of X

was then generated as in the random bivariate normal case. This pair of

X and Y values then represents a deviate from a bivariate normal frequency

distribution based on a fixed value of X.

For the case where it is nectAsary to obtain deviates from a bivar-

iate frequency distribution for rectangularly distributed values of X

but for the Y values normally distributed for each value of X, again the

procedure for the generation of the Y values is the same as in the two

previous cases. The random values of X were obtained by using RAMC to

generate random deviates from a rectangular univariate distribution with

a mean of. 50.0 and a standard deviation of 10.0. The rectangularly dis-

tributed values of X were obtained iA a manner analogous to the procedure

previoudy describedfor obtaining normally distributed fixed values, excert

that in the rectangular case a rectangular probability function was util-

ized rather than the probability function tor the normal curve.

However, it should be noted that when this procedure for both normal

and rectangular distributions is used to establish the frequency of occur-

rence of the fixed X values, it is difficult to maintain both the system

of intervals between the 13 fixed values of X and a given standard devia-

tion of the X values. For this reason, in the fixed case the intervals

between the fixed X values were maintained and the standard deviations

of the X marginal distribution for different sample sizes were allowed to

vary. For fixed but normally distributed values of X, the standard devia-

tion of the X values was 7.07 for sample size five, 8.55 for sample size

thirteen and 9.47 for sample size thirty-nine. For fixed but rectangularly

distribUted values of X, the standard deviation of the X values was 7.07

for sample size five, 18.71 for samrle size thirteen and 18.71 for sample

size thirty-nine.
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The remainder of the procedure for all cases consiste6 of generating

the necessary number of X,Y pairs with the appropriate characteristics

for the dcteired number of cases per,group, accumulating the various sums,

sums of squares and sums of products and then utilizing these figures in

the computing formulas to produce sample values of the slope, intercept,

standard error of slope and intercept, and critical statistics foz the

slope and intercept. This entire procedure yes then repeated one thousand

times in order to obtain sampling distributions for the slope, intercept,

and the critical statistics of the slope and intercept.

Results

The results are presented in Tables 2 through 7. Tables 2 and 3

represent the results of the experiments involving the investigation of

the effects of violation of the assumption that the concomitant variable

is a fixed or mathematical variable. Table 1 presents the legend necessary

to interpret Tables 2 and 3. Tables 4 through 7 were prepared from the

information contained in Tables 2 and 3 to aid in the interpretation of

Tables 2 and 3.

Table 1 is an explication of the two and three letter codes which

identify the various statistics reported for each experiment shown in

Tables 2 and 3. It should be noted that the rct.ported statistics for each

experiment contain both expected and observed values pertaining to inter-

cept and slope. The first set of five statistics refers to various

expected and observed values of the distribution of slopes and the second

set of five statistics refers to the same values of the distribution of

intercepts. The next three statistics refer to various observed and

expected values of the critical ratio related to differences in slope and

the next three statistics refer to tbe same values except that they relate

to differences in intercept.

Tables 2 and 3 show some of the expected and obtained values of the

distributions of slope, intercept and critical statistics of the slope and

intercept for the two types of bivariate distributions. The X's were

selected with both fixed and random values for six values of standard

errors of estimate based on the values of correlation shówn for three

sample sizes and two groups. Tables 4 through 7 contain summary infor-

mation from Tables 2 and 3 concerning the discrepancy between the observed

15



Table 1

Legend of Alphabetic Codes Needed to Interpret Tables 3 through 7

ES - the expected mean of the theoretical sampling distribution of slope values which
is calculated from the specified parameters by slope = r . S

15

where r is the specified correlation
S is the standard deviation of the Y marginal

S
x

is the standard deviation of the X marginal

distribution

distribution.

OS - the mean of the distribution of observed values of slope

SDS - the standard deviation of the distribution of the observed values of slope

SS - the skewness of the distribution of the observed values of slope

KS - the kurtosis of the distribution of the observed values of slope

El - the expected mean of the theoretical sampling distribution of intercept values
which is calculated from the specified parameters by intercept = Mx - slope. My

where M
x

is the mean of the X Marginal distribution

where M is the mean of the Y marginal distribution.

01 - the mean of the distribution of the observed values of intercept

SD1 - the standard deviation of the distribution of the observed values of intercept

S1 - the skewness of the distribution of the observed values of intercept

Kl - the kurtosis of the distribution of the observed values of intercept

ODS - the number of observed F values based on differences in slope which are greater
than the specified value of the central f: distribution for the proper degrees

of freedom at the .05/.01 confidence level
EFS - the expected mean of the central F. distribution for the proper degrees of

freedom for differences in slope

OFS - the mean of the observed distribution of F. values based on difference in slope

OD1 - the number of observed f. values based on differences in intercept which are

greater than the specified value of the central fldistribution for the pronAr

degrees of freedom at the .05/.01 confidence level.

EF1 - the expected mean of the central Fdistribution for the proper degrees of freedom

for difference in intercept

OF1 - the mean of the observed distribution of fi, values based on differences in
intercept
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and expected mean values of the distributions of intercept and slope and

the nuMber of observed F values based on differences in intercent and

differences in slope significant at the .05 and .01 levels.

Although there usually appears to be some discrepancy between what

is observed and what is expected in Tables 2 through 7, these discrepan-

cies are generally of a small magnitude. Some results detectable in

these tables are outlined below.

A. Effects on the moments of the distributions of intercept and slope

1. Discrepancies between what is expected and observed for the

mean values of the distributions of slope shown in Tables

2, 3 and 4

a. Distribution shape and sampling procedure appear to be

related to the discrepancy of the slope in a comnlex

manner. The random normal case tends to over-estimate

the population slope with.the highest absolute discrepancy

while the random rectangular,fixed normal and fixed rec-

tangular cases tend to underestimate the population

slope in the above order of increasing absolute discrepancy.

b. Sample size appears to be related to discrepancy fOr

slope with smaller absolute discrepancy associated with

larger samnle size except for the fixed normal case for

sample size thirteen.

c. Standard error of estimate appears to be related to

discrepancy for slope with least absolute discrepancy

occurring with smaller values of standard error of

estimate (higher correlation).

2. Discrepancies between what is expected and observed for the

mean values of the distributions of intercept shown in

Tables 2, 3 and 5.

a. Distribution shape and sampling rrocedure atrear to be

related to the discrepancy of the intercepts in a corm-

plex manner. The random normal case tends to underesti-

mate the population intercept with the lowest absolute

discrepancy while the fixed rectangular, the fixed

normal and random rectangular cases tend to overestimate
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the population intercept in the above order of increasing

absolute discrepancy.

b. Sample size appears to be related to the discrepancy for

intercepts with smaller absolute discrepancy associated

with larger sample size except for the fixed normal case

for sample size thirteen.

c. Standard error of estima-ue appears to be related to dis-

crepancy with least absolute discrepancy occurring with

the smaller values of standard error of estimate (higher

correlation).

3. Discrepancies between what is expected and observed for the

skewness and kurtosis of the distributions of intercept and

slope shown in Tables 2 and 3

a. The skewness and kurtosis of the distributions of inter-

cept and slope only appear to differ substantially from

what vas expected for the random case for sample size

five. For this case the skewness and kurtosis appear

to be related to the values of standard error of esti-

mate with larger values of skewness and kurtosis associ-

ated with lower values of standard error. The same effect

also appears to a smaller degree for the random case when

the sample size is thirteen.

B. Effects on the discrepancy between the observed and expected

mean values of the distributions of F values for intercept and

slope shown in Tables 2 and 3

1. The discrepancies between what is expected and observed do

not appear to be systematically related to

a. Distribution shape or sampling procedure

b. Samrle size

c. Value of standard error of estimate

C. The effects on the critical statistics for decisions concerning

differences in slope and intercept

1. Discrepancies between what is expected and observed for the

number of F values based on differences in slope significant
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at the .05 and .01 levels shown in Tables 2, 3 and 6

a. Distribution shape and sampling procedure appear to be

related to the number of observed F values significant

at the .05 and .01 levels in a complex manner. At the

.05 level, the order of average highest occurrence and

percent of error relative to the expected value of

fifty is random normal (15% error), fixed rectangular

(8% error), fixed normal (3% error), and random rectan-

gular (9% error). At the .01 level the order of highest

average occurrence of the F values and percent etror

relative to the expected value of ten is fixed rectan-

gular (31% 'error), random normal (4% error), fixed

normal (5% error), and random rectangular (10% error).

b. Standard error of estimate does not appear to be sys-

tvmatically related to the number of significant F values

at the .05 and .01 levels.

c. Sample size does not appear to be systematically related

to the number of significant F values at the .05 and .01

levels.

2. Discrepancies between what is extected and observed for the

number of F values based on differences in intercept signi-

ficant at the .05 and .01 levels shown in Tables 2, 3 and

a. Distribution shape and sampling procedure appear to be

related to the number of observed F values significant

at the .05 and .01 levels in the following manner. At

the .05 level, the order of average highest occurrence

and percent error relative to the expected value of fifty

is random normal (14% error), random rectangular (6% error),

fixed normal (5% error), and fixed rectangular (1% error).

At the .01 level, the order of average highest occurrence

and percent error relative to the expected value of ten

is random normal (7% error), random rectangular (1% error),

fixed normal (2% error), and fixed rectangular (9% error).
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b. Standard error of estimate does not appear to be

systematically related to the number ot significant

F values at the .05 and .01 levels.

c. Sample size does not appear to be systematically related

to the number of significant F values at the .05 and .01

levels.

In summary, one may say that although few of the observed values are

exactly the ones expected, generally these differences are of small mag-

nitude. The difficulties which were. Dredicted concerning non-normality

of the distributions of intercept and slope for the random case do appear

for small sample sizes. However, the critical features of intercept and

slope do not appear to be different enough from what is expected to merit

concern for practical purposes. Also the lack of normality does not seem

to cause a sufficient increase in the nuMber of type one errors for deci-

sious about differences in intercepts and slopes to merit concern for

practical purposes.

Conclusions

In the mathematical treatment of linear models, certain of the

independent variables are assumed to be fixed variables (Graybill, 1961).

When this assumption is made, it can be shown that the computed estimates

of the parameters occurring in the models have the desirable characteris-

tics that they are "good" estimates and are normally distributed.

It is often convenient to overlook this assumption when linear

models are utilized in a research situation, since the nature of a variable

often does not allow the researcher to select cases with particular values

of a variable without discarding large amounts of data. This empirical

study vas undertaken as an attempt to discover the effects produced for

the computed statistics and for the decisions made on the basis of a

critical ratio concerning differences in these statistics for a particular

family of linear models when certain independent variables are not fixed

varidbles.

The assumption that 6ertain independent variables have fixed values

can be violated in one or both of two ways: (1) the researcher can fail

to pre-select values of the variables which will be found in the data
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and utilized to estimate the statistics, and/or (2) measurement error can

be introduced through the process of observing the values of the indepen-

dent variables. Berkson (1950) has shown that if for certain linear

models the values of the independent variables are only allowed to assume

fixed values, the values of these variables can be observed with error

without disturbing the mathematically desirable distributional character-

istics of the estimates of the unknown parameters. The present study

focused on the effects produced for only one of the two cases of violation

of this assumption for which no mathematical solutions are available.

The case investigated occurs when certain independent variables are not

fixed but are observed without error.

The particular family Of linear models investigated are a set

presented by Bottenberg and Ward (1963, pp. 76-86), who apply them to

problems generally approached by the use of the technique of analysis

of covariance. The estimable terms in these models represent the esti-

mates of the parameters of intercepts and slopes of group regression lines.

This study investigated the following consequences of the departures

from the assumption for persons doing research: (1) the estimates of the

slope and intercept parameters are not "good," (2) the distributions of

the values of these estimates are non-normal, and/or (3) the number of

erroneous decisions concerning differences in the estimates are greater

than expected.

Some difficulty vas encountered in interpreting the results of this

study because differences between what is dbserved and what is expected

may be due to sampling fluctuation or to systematic fluctuation of a

subtle nature caused by varying the various factors in the experiments.

The results are probably not rigorous enough to please a mathematical

statistician. However, these discrepancies were of a small enough

magnitude and the values selected for the various factors were probably

general enough that the results are of practical value.

In general, the results of this study indicate that the violation of

the assumption that the independent variable is fixed does not produce

enough disparity between what is expected and what is observed for any

of the previously mentioned consequences to be a problem for persons
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doing research. Thus it seems reasonable to conclude that for this set

of linear models, within the confines of the values of the factors selected

for this study and for sample sizes not too small (in the neighborhood of

thirteen and greater), the effects of the violation of the assumrtion that

the independent variable is fixed present little or no problem for

researchers.

4
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